Search results for "Failure modes"

showing 10 items of 16 documents

Failure maps to assess bearing performances of glass composite laminates

2018

Aim of this article is the assessment of the bearing mechanical performances of pin-loaded glass laminates as function of their geometrical configuration. To this concern, 32 specimens having different hole diameter (D), laminate width (W), and hole center to laminate free edge distance (E) have been tested under bearing conditions. The maximum bearing stress and the stress-displacement curves were analyzed as function both of hole to laminate free edge distance E and hole diameter D. Moreover, an experimental 2D failure map was created by placing the experimental results (i.e., the kind of failure mechanism occurred for each geometrical configuration) in the plane E/D versus W/D ratios. In…

0209 industrial biotechnologyBearing (mechanical)Materials sciencePolymers and Plastics02 engineering and technologyGeneral ChemistryComposite laminates021001 nanoscience & nanotechnologylaw.inventionCeramics and Composites; Chemistry (all); Polymers and Plastics; Materials Chemistry Metals and Alloys020901 industrial engineering & automationSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialilawMaterials ChemistryCeramics and CompositesComposite material0210 nano-technologyBearing failure modes mechanical joints glass fibre failure map
researchProduct

Static Performances of Timber- and Bamboo-Concrete Composite Beams: A Critical Review of Experimental Results

2021

The use of composite beams made with traditional concrete and bio-based materials (such as timber and bamboo) is a valuable solution to reduce the environmental impact of the building sector. Timber-Concrete Composite (TCC) beams have been used for decades in structural applications such as new buildings, refurbishment of old timber structures, and bridges. Recently, different researchers suggested composite beams based on engineered bamboo, commonly named Bamboo-Concrete Composite (BCC) beams. This study presents a systematic comparison of structural performances and connection behavior of TCC and BCC beams under short-term static load. TCCs beams are compared to BCC ones using similar she…

BambooMaterials sciencebusiness.industry0211 other engineering and technologiesFailure modeMechanical properties020101 civil engineering02 engineering and technologyBuilding and ConstructionStructural engineeringShear connectorBending performancesFailure modesShear connectorsComposite beams0201 civil engineeringBamboo-concreteSettore ICAR/09 - Tecnica Delle Costruzioni021105 building & constructionbusinessBending performanceMechanical propertieTimber-concreteThe Open Construction & Building Technology Journal
researchProduct

ELECTRE TRI-based approach to the failure modes classification on the basis of risk parameters: An alternative to the risk priority number

2017

Proposing an ELECTRE TRI-based approach for the failure modes classification into predefined and ordered risk classes.Direct identification of failure modes on which performing the corrective actions with priority.Easy definition of risk classes on the basis of DMs expertise and perception of the industrial context considered.Application to dairy manufacturing processes. Failure Mode and Effects Analysis (FMEA) is an engineering technique aimed at the detection of potential failures, their causes and consequences on the system/process under investigation. When used for the failure modes prioritization, FMEA is also referred to as Failure Mode, Effects and Criticality Analysis (FMECA). In tr…

Engineering021103 operations researchGeneral Computer Sciencebusiness.industryProcess (engineering)0211 other engineering and technologiesGeneral EngineeringSpecific riskContext (language use)02 engineering and technologyMultiple-criteria decision analysisReliability engineeringFailure mode effects and criticality analysisFailure modes classificationSettore ING-IND/17 - Impianti Industriali Meccanici0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingELECTRE TRISensitivity (control systems)ELECTREbusinessFailure mode and effects analysisFMECA
researchProduct

A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the…

2017

Abstract Failure Mode and Effects Analysis (FMEA) is a safety and reliability analysis tool widely used for the identification of system/process potential failures, their causes and consequences. When aimed at the failure modes prioritization, FMEA is named Failure Mode, Effects and Criticality Analysis (FMECA). In the latter case, failure modes are commonly prioritized by means of the Risk Priority Number (RPN) that has been widely criticized to have several shortcomings. Firstly, in the presence of multiple experts supplying different and uncertain judgments on risk parameters, RPN is not able to deal with such a kind of information. Therefore, the present paper proposes the Dempster-Shaf…

EngineeringEpistemic uncertainty021103 operations researchFailure modes prioritizationbusiness.industryProcess (engineering)0211 other engineering and technologiesDempster-Shafer Theory02 engineering and technologyInterval (mathematics)Industrial and Manufacturing EngineeringReliability engineeringIdentification (information)Propulsion systemFailure mode effects and criticality analysisDempster–Shafer theorySettore ING-IND/17 - Impianti Industriali Meccanici0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingUncertainty quantificationSafety Risk Reliability and QualitybusinessFailure mode and effects analysisReliability (statistics)FMECAReliability Engineering & System Safety
researchProduct

Strengthening of steel-reinforced concrete structural elements by externally bonded FRP sheets and evaluation of their load carrying capacity

2014

Abstract The paper proposes a preliminary design tool for reinforced concrete (RC) elements strengthened by fiber-reinforced-polymer (FRP) sheets to be used in civil engineering applications and in particular in medical buildings. The design strategy is based on limit analysis theory and utilizes a numerical procedure which provides a direct method to determine peak load, failure mode and critical zones of the structural elements of interest.

EngineeringRC slabs limit designbusiness.industryFE-based 3D analysiDesign toolStructural engineeringDesign strategyFibre-reinforced plasticPeak loads and failure modesSettore ING-IND/35 - Ingegneria Economico-GestionaleReinforced concreteLoad carryingLimit analysisPeak loadCeramics and CompositesFE-based 3D analysis; FRP-strengthening systems; Peak loads and failure modes; RC slabs limit design; Ceramics and Composites; Civil and Structural EngineeringFRP-strengthening systemSettore MED/36 - Diagnostica Per Immagini E RadioterapiabusinessFailure mode and effects analysisCivil and Structural EngineeringComposite Structures
researchProduct

Strengthening of steel-reinforced concrete structural elements by externally bonded FRP sheets and evaluation of their load carrying capacity to face…

2014

The paper has proposed a limit analysis procedure for a preliminary design of RC elements strengthened by externally bonded FRP sheets. The procedure, based on a multi-yield-criteria limit analysis approach, has led to a reliable prediction of peak loads and failure modes of the analyzed elements (slabs) by simultaneously considering the limit state of the constituent materials, so resulting very useful in many applications of engineering interest. The attention has been focused on hospital applications in which increment of service loads or realization of openings can weaken some structural elements that have been strengthened by FRP sheets.

FRP-strengthening systems RC slabs limit design FE-based 3D analysis Peak loads and failure modesSettore MED/36 - Diagnostica Per Immagini E RadioterapiaSettore ING-IND/15 - Disegno E Metodi Dell'Ingegneria Industriale
researchProduct

Improved FMECA for effective risk management decision making by failure modes classification under uncertainty

2022

Failure Mode, Effects, and Criticality Analysis (FMECA) is a proactive reliability and risk management technique extensively used in practice to ensure high system performance by prioritising failure modes. Owing to the limitations of traditional FMECA, multi-criteria decision-making methods have been employed over the past two decades to enhance its effectiveness. To consider the vagueness and uncertainty of the FMECA evaluation process, an interval-based extension of the Elimination et Choice Translating Reality (ELECTRE) TRI method is proposed in the present paper for the classification of failure modes into risk categories. Therefore, ratings of failure modes against risk parameters are…

Failure modes classificationPropulsion systemSettore ING-IND/17 - Impianti Industriali MeccaniciFailure modes classification; FMECA; Interval-valued ELECTRE TRI; Propulsion systemGeneral EngineeringGeneral Materials ScienceFailure modes classification FMECA Interval-valued ELECTRE TRI Propulsion systemFMECAInterval-valued ELECTRE TRIEngineering Failure Analysis
researchProduct

Experimental design of the bearing performances of flax fiber reinforced epoxy composites by a failure map

2018

Abstract This paper represents the first effort aimed to the investigation of the pin/hole contact stress and failure mechanisms of epoxy composites reinforced with woven flax fabrics, underwent to tensile bearing tests. In particular, the maximum loads and failure modes are evaluated at varying the laminate geometrical configuration. In order to optimize the use of polymer composites reinforced with flax fibers in structural applications, an experimental failure map, identifying main failure modes of mechanically fastened joints, is obtained as function of hole diameter, distance of the hole from the free edge of the laminate and laminate width. Moreover, a theoretical approach based on th…

Materials science02 engineering and technologyMechanical jointFlax compositeIndustrial and Manufacturing Engineeringlaw.inventionFlax fiber0203 mechanical engineeringlawUltimate tensile strengthComposite materialBearing (mechanical)Mechanical EngineeringFailure modeEpoxyComposite laminates021001 nanoscience & nanotechnologyBearing; Failure modes; Flax composites; Mechanical joints; Natural fibers; Ceramics and Composites; Mechanics of Materials; Mechanical Engineering; Industrial and Manufacturing EngineeringSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali020303 mechanical engineering & transportsContact mechanicsMechanics of Materialsvisual_artMechanical jointBearingCeramics and CompositesFracture (geology)visual_art.visual_art_mediumNatural fibers0210 nano-technologyComposites Part B: Engineering
researchProduct

Bearing strength and failure behavior of pinned hybrid glass-flax composite laminates

2018

Abstract The aim of the present work is to evaluate the influence of external layers of glass woven fabric on the pin-hole strength of flax/epoxy laminates. Single lap bearing tests were carried out to evaluate the fastened joint performances depending on laminate stacking sequence. In order to better identify the mechanical behavior of the hybrid laminate, full glass and flax laminates were also compared. In particular, bearing stress and failure mechanisms were investigated at varying joint geometry. Furthermore, an experimental failure map, clustering main failure modes of pinned hybrid composite laminate, was used to better clarify the relationship between mechanical failure and geometr…

Materials scienceBearing; Failure modes; Flax; Glass; Hybrid laminate; Mechanical joints; Organic Chemistry; Polymers and PlasticsPolymers and PlasticsComposite number02 engineering and technologyMechanical jointlaw.inventionStress (mechanics)Hybrid laminate0203 mechanical engineeringlawWoven fabricFlaxBearing capacityComposite materialBearing (mechanical)Organic ChemistryFailure modeEpoxyComposite laminates021001 nanoscience & nanotechnology020303 mechanical engineering & transportsSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMechanical jointvisual_artBearingvisual_art.visual_art_mediumGla0210 nano-technology
researchProduct

Evolution of the bearing failure map of pinned flax composite laminates aged in marine environment

2020

Abstract Aim of the present paper is to evaluate how the bearing behavior of pinned flax composites can be influenced by their exposition to critical environment such as marine one. To this scope, flax fibers/epoxy pinned laminate was exposed up to 60 days to salt-fog environment, according to ASTM B 117 standard. In particular, samples having different hole diameter (D), laminate width (W), and hole center to laminate free edge distance (E) have been tested under single lap bearing tests at varying the aging exposition time. Following this procedure, an experimental 2D failure map clustering main failure modes was created by placing the experimental results in the plane E/D versus W/D rati…

Materials scienceComposite number02 engineering and technologyMechanical joint010402 general chemistry01 natural sciencesIndustrial and Manufacturing Engineeringlaw.inventionlawFlaxUltimate tensile strengthComposite materialBearing (mechanical)Tension (physics)Mechanical EngineeringFailure modeEpoxyComposite laminates021001 nanoscience & nanotechnology0104 chemical sciencesShear (sheet metal)Salt fog agingMechanics of Materialsvisual_artBearingBearing; Failure modes; Flax; Mechanical joints; Salt fog agingCeramics and Compositesvisual_art.visual_art_mediumFracture (geology)0210 nano-technologyComposites Part B: Engineering
researchProduct